Research at the university
Research Database: Projects
Forschungsprojekte (192)
In diesem Projekt wird der symmetrische Chiffrierstandard Advanced Encryption Standard (AES) in einer Hardwareschaltung mit speziellen Mechanismen implementiert, die einer physikalischen Kryptoanalyse zumindest bis zur ersten Ordnung entgegenwirken.
In European companies and research institutes VHDL is the most popular language for the design of digital electronic systems. VHDL stands for VHSIC Hardware Description Language, in which VHSIC is the abbreviation of Very High Speed Integrated Circuit. In each partnering institute in this project (and also in many other European institutes of higher education) VHDL is part of the academic bachelor and master in electronics. The language can be used for the development of applications on both programmable and non-programmable chips. The most widely used programmable chips are FPGAs or Field Programmable Gate Arrays. Decades of experience shows that the design of digital electronic applications needs a lot of practice. The classical way this is done, is by simulating digital designs, intended for implementation on programmable or non-programmable chips, using specific software on a PC. The verification of the developed design is done by checking the simulation results in a text format or as a digital waveform. This way of simulating a digital design is mostly experienced by students as being boring. Furthermore, a simulation-only verification approach causes the students to lose contact with reality, while the development of a real-life application is a big advantage for a future engineer. To solve the limitations of simulation software, a real-life laboratory application can be driven by a programmable chip. The disadvantage of this way of learning is the overhead in time and money for the developers (i.e. usually the professors or assistants). Besides, the laboratory setup is only accessible within the institute and one setup does not offer sufficient variation in student exercises, assignments and projects. In this project, we will develop a virtual laboratory that allows students to access several real-life setups whenever they are connected to the internet. These setups will be developed by the partnering institutes and will be made programmable through the internet using VHDL. Each setup will be accompanied by a camera that films the behaviour of the setup and sends back the result to the student. This way, the verification of the design is done by checking the behaviour of the application instead of digital simulation results. The impact of the project is two-fold. On the one hand, the project prepares students for digital design in a company environment, which is very relevant, given the rapid digitalization of our society. It gives the partnering institutes the opportunity to deliver engineers with better skills in digital design. On the other hand, this project contributes to the visibility of the research activities in the partnering institutes, since each institute will focus on its own expertise in the development of the two advanced laboratory setups. Besides, the distributed laboratory will be made extensible such that other institutes can add their own laboratory setup. This way, the impact will grow beyond the project period.
Das DFG Graduiertenkolleg UbiCrypt widmet sich Forschungsfragestellungen der Kryptologie in ubiquitären Rechnerwelten, vom einzelnen Chip in Sensoren oder Chipkarten über Smartphones und PCs hin zum allgegenwärtigen Cloud-Computing. UbiCrypt arbeitet an neuartigen IT-Sicherheitslösungen und IT-Sicherheitsanwendungen für die vernetzten ubiquitären Rechnerwelten.In UbiCrypt arbeiten Kryptologen, Ingenieure und Informatiker eng zusammen, um kryptographische Algorithmen von deren Design und Analyse bis zur Implementierung in Hardware und Software zu untersuchen. Das übergreifende Ziel von UbiCrypt ist es, eine internationale und interdisziplinäre Doktorandenausbildung in der IT-Sicherheit auf internationalem Spitzenniveau anzubieten. Kerstin Lemke-Rust ist bereits seit Start des DFG Graduiertenkollegs UbiCrypt im Oktober 2012 Principal Investigator von UbiCrypt und arbeitet seit vielen Jahren eng mit Forschern der Ruhr-Universität Bochum zusammen.
Dieses Projektvorhaben verfolgt das Ziel, Software in eingebetteten Systemen durch neuartige technische Methoden vor Produktpiraterie zu schützen. Im Fokus dieses Vorhabens steht die Plagiatserkennung von eingebetteter Software mittels Methoden der Seitenkanalanalyse. Eingebettete Systeme finden wir in nahezu allen Bereichen unseres heutigen Lebens, sei es in der hochtechnologisierten Automobilindustrie oder in den intelligenten Steuerungsgeräten im Haushalt, z.B. bei Waschmaschinen und neuen Stromzählern. In sicherheitsrelevanten Bereichen wird oft eingebettete Software in Smart Cards und Kartenlese-Terminals eingesetzt. Hieraus resultieren bereits vielfältige Anwendungen, genannt seien hier beispielsweise hoheitliche elektronische Ausweise, elektronische Zahlungsverkehrssysteme, elektronische Gesundheitskarte und das digitale Tachographensystem. Die Plagiatserkennung in gesicherten eingebetteten Systemen ist ein sehr schwieriges Problem, da in der Regel der Programmcode gegen Auslesen aus dem Speicher des eingebetteten Computers geschützt ist, so dass eine vergleichende Analyse des Programmcodes nicht direkt möglich ist. Einen vielversprechenden Ansatz, eingebettete Software effizient zu analysieren, bietet die Messung sogenannter Seitenkanäle, die von den Mikrocontrollern emittiert werden und Information über innere Zustände des Programms preisgeben. Als Seitenkanal werden physikalisch messbare Größen des eingebetteten Systems wie Versorgungsspannung oder elektromagnetische Abstrahlung verwendet. In der Regel werde diese Seitenkanäle genutzt, um kryptographische Implementierungen in Software oder Hardware zu brechen, d.h. geheime Informationen wie kryptographische Schlüssel aus Chips zu extrahieren. Diese als Seitenkanalangriffe bekannten Methoden sind seit etwa fünfzehn Jahren ein intensives Forschungsfeld mit schätzungsweise tausend wissenschaftlichen Veröffentlichungen. Dieses Projekt verfolgt das Ziel, neuartige Methoden für digitale Wasserzeichen in eingebetteter Software zu entwickeln, die mittels Seitenkanalanalyse zuverlässig erkannt werden können. Mit Hilfe eines Prüfstandes lässt sich dann begutachten, ob eine verdächtige Software auf dem Markt mit diesem Kopierschutzverfahren erstellt wurde und somit, ob es sich mit hoher Wahrscheinlichkeit um ein Plagiat handelt.
The overarching goal of SESAME is to develop an open, modular, configurable, model-based approach for systematic engineering of dependable MRS. The approach is supported by a set of public meta-models, components and configuration tools produced by the project. Target MRS may employ AI, and will be capable of operating dependably in open configurations, and in conditions of uncertainty that include the acknowledged possibility of cyber-attacks. Five novel applications that add value to the European science and economy will be developed and verified for dependability using the SESAME approach.
Project management at the H-BRS
Prof. Dr Nico Hochgeschwender (Ausgeschieden)With MIAAS, a European open source platform for decision making based on mobility data is being developed. Key activities are the consolidation and exploitation of shared mobility and public transport data as well as the exploration and development of the required technical infrastructure and interfaces. In particular, a mobility intelligence dashboard will be developed and tested. One research focus is on end user development for machine learning. The goal is to support cities in establishing shared mobility together with public transport as a central component of their mobility strategy. MIAAS will simplify the planning of shared mobility services, improve the integration with public transport and facilitate the data exchange with mobility providers. All core components of MIAAS will be provided as open source. In addition, multimodal data sets for six focus cities will be published. In the future, standardized interfaces will help cities to request data directly from providers and to simultaneously provide regulatory information. Results are to be disseminated at conferences, trade fairs, workshops and in exchange with partners in Europe. Code, data and guidelines are to be published on a website in order to establish a mobility intelligence community in the mid-term. Scientific publications are planned in the fields of end user development, machine learning and multimodal mobility behavior. In addition, a productization by project partners is intended.
Project management at the H-BRS
Prof. Dr Alexander Boden Paul BossauerDie Hochschule Bonn-Rhein-Sieg - einfach ausgezeichnet. Studieren Sie bei uns! Es erwartet Sie ein praxisorientiertes Studium auf der Basis aktueller Forschungsergebnisse.
Controlling a robotic system to perform a certain set of actions in an unknown and dynamic environment is easy if you have a perfect model of that environment. However, in the real world, such models are unavailable. In this research we are tackling the challenge of deploying an information maximization control strategy for Unmanned Aerial Vehicles (UAV) by accurately sensing and modelling dynamic environments using sensors and multi-sensor fusion methods.
Assuring the safety of teams of autonomous unmanned aerial vehicles (UAVs) that carry out a safety-critical inspection task collaboratively is very challenging due to uncertainties and risks associated with the operating environment, individual UAV failures, inconsistent global perspective between team, interference and/or contention because of limited physical space, and unreliable communication. In SAFEMUV, we will extend, adapt, and integrate our recent research and the latest advances from operational risk assessment for UAVs, managing variability in robotic systems through feature modelling, and automated synthesis of models and testing campaigns for assessing system robustness. In a nutshell, SAFEMUV will deliver a process for systematic robustness assessment of UAV teams underpinned by methods for the specification, generation and testing of collaborative inspection scenarios, enabling the progressive transition from simulation to lab-based operations and to real-world operations; and a demonstrator that realises this process using an a simulated environment, an indoor flight arena and an outdoor space at Luxembourg Airport.
Project management at the H-BRS
Prof. Dr Nico Hochgeschwender (Ausgeschieden)The main objective of METRICS is to organise challenge-led robotics competitions as clear, rigorous and effective evaluation campaigns for the four priority areas, namely healthcare, agile production, inspection and maintenance and agri-food. These competitions are a cornerstone for the effective design, manufacture, deployment and modification of robotic systems. To this end, METRICS will design metrology-grade methods for robotics evaluation, maximise the take-up of the evaluation and benchmarking tools, ensure the industrial relevance of challenge-led competitions, attract industrial stakeholders, academics and the general public to competitions, maximise the compliance of robots with ethical, legal, social, economic requirements, help to fill the normative gap for intelligent robotic systems by designing evaluation plans as representative standards, and structure the European robotics community around competitions in the four PAs and ensure its sustainability.
Contact Points
Centre for Science and Technology Transfer (ZWT)
Room
F 405
Vice President Research and Young Academics
Campus
Sankt Augustin