Exploring Natural Dynamics for Efficient and Robust Control of Modern Robots

Promotionsprojekt im Überblick

Very often, objectives such as accuracy and precision of robot behaviours are not the only requirements imposed on them. For completing tasks defined in dynamic and unstructured environments/settings, it is necessary that the employed software additionally enables high degrees of efficiency and robustness in a robot, given the system’s mechanical structure and actuation capabilities. It has been shown that the advanced efficiency and robustness of humans and animals, in performing the locomotion and manipulation tasks, are enabled by a control paradigm that exploits (i.e. takes the advantage of) their natural dynamics. Those insights motivate us to consider the same control paradigm, i.e. embrace natural dynamics of the robotic systems while addressing the problem of enabling such advanced performance for our robots. Doctoral student Djordje Vukcevic works on developing reusable control methods for exploiting robot's natural dynamics in unifying, explicit, general and real-time applicable ways. Those reusable solutions will provide a strong step towards advanced and computationally efficient control algorithms and architectures, and their automatized and formal development.
roboter kuka youbot fbinf 20130514.jpg (DE)

Doktorandin/Doktorand

Betreuende Professorin oder Professor

Projektbeschreibung

Very often, objectives such as accuracy and precision of robot behaviours are not the only requirements imposed on them. For completing tasks defined in dynamic and unstructured environments/settings, it is necessary that the employed software additionally enables high degrees of efficiency and robustness in a robot, given the system’s mechanical structure and actuation capabilities. It has been shown that the advanced efficiency and robustness of humans and animals, in performing the locomotion and manipulation tasks, are enabled by a control paradigm that exploits (i.e. takes the advantage of) their natural dynamics. Those insights motivate us to consider the same control paradigm, i.e. embrace natural dynamics of the robotic systems while addressing the problem of enabling such advanced performance for our robots. Doctoral student Djordje Vukcevic works on developing reusable control methods for exploiting robot's natural dynamics in unifying, explicit, general and real-time applicable ways. Those reusable solutions will provide a strong step towards advanced and computationally efficient control algorithms and architectures,
and their automatized and formal development.