AErOmAt - Aerodynamische Energie-Optimierung durch Metamodell-gestützte Adaption von Strukturen
Forschungsprojekt im Überblick
Förderungsart
Zeitraum
01.10.2016 to 30.09.2019
Projektbeschreibung
Die effiziente Nutzung verfügbarer Energie ist eine der großen Herausforderungen unserer Zeit. Eine besondere Bedeutung kommt dabei der Analyse und Optimierung von Formen und Strukturen hinsichtlich ihrer aerodynamischen Eigenschaften zu. Wichtige Anwendungsgebiete sind die Entwicklung energieeffizienter Fahrzeuge und die Windenergietechnik.
Rechnergestützte Ansätze durch Simulation und automatische Optimierung sind heute selbstverständlicher Teil der technischen Entwicklung und haben zu erheblichen Verbesserungen geführt. Die hohe Komplexität sowohl hinsichtlich
der Rechenzeit als auch bezüglich des Speicherbedarfs limitiert jedoch bislang solche Ansätze. Zusammen mit unseren Forschungs- und Entwicklungspartnern bauen wir auf bewährten Ansätzen der Datenreduktion und der Surrogatmodellierung auf, um dieses Problem signifikant zu verkleinern:
- Durch Kombination mit indirekten Oberflächencodierungen werden neue Methoden entwickelt um einen erheblichen Teil der Simulationen einzusparen und so komplexere Anwendungsfragestellungen zu lösen.
- Mit einer komponentenbasierten Architektur und der Weiterentwicklung zugrundeliegender Softwaremethoden wird vermieden, dass die Kombination unterschiedlicher Verfahren durch Implementierungsaspekte oder Qualitätseinbußen limitiert wird.
Dies unterstreicht die Einsatzmöglichkeiten dieser neuen Technologie und ermöglicht weitreichende Verbesserungen in diesen gesellschaftlich bedeutsamen Anwendungsgebieten.
Aerodynamic Design Exploration through Surrogate-Assisted
Illumination
(Best Student Paper -- Multidisciplinary Design Optimization)
Gaier, Adam, Alexander Asteroth, and Jean-Baptiste Mouret. AIAA Aviation and Aeronautics Forum 2017
Data-Efficient Exploration, Optimization, and Modeling of Diverse Designs through Surrogate-Assisted
Illumination
(Best Paper -- Complex Systems)
Gaier, Adam, Alexander Asteroth, and Jean-Baptiste Mouret. Genetic and Evolutionary Computation Conference 2017
Hierarchical Surrogate Modeling for Illumination Algorithms
Alexander Hagg. Genetic and Evolutionary Computation Conference 2017
Projektveröffentlichungen
Ergebnisse
Aerodynamic Design Exploration through Surrogate-Assisted
Illumination
(Best Student Paper -- Multidisciplinary Design Optimization)
Gaier, Adam, Alexander Asteroth, and Jean-Baptiste Mouret. AIAA Aviation and Aeronautics Forum 2017
Data-Efficient Exploration, Optimization, and Modeling of Diverse Designs through Surrogate-Assisted
Illumination
(Best Paper -- Complex Systems)
Gaier, Adam, Alexander Asteroth, and Jean-Baptiste Mouret. Genetic and Evolutionary Computation Conference 2017
Hierarchical Surrogate Modeling for Illumination Algorithms
Alexander Hagg. Genetic and Evolutionary Computation Conference 2017
Projektveröffentlichungen
Publikationen
Aerodynamic Design Exploration through Surrogate-Assisted
Illumination
(Best Student Paper -- Multidisciplinary Design Optimization)
Gaier, Adam, Alexander Asteroth, and Jean-Baptiste Mouret. AIAA Aviation and Aeronautics Forum 2017
Data-Efficient Exploration, Optimization, and Modeling of Diverse Designs through Surrogate-Assisted
Illumination
(Best Paper -- Complex Systems)
Gaier, Adam, Alexander Asteroth, and Jean-Baptiste Mouret. Genetic and Evolutionary Computation Conference 2017
Hierarchical Surrogate Modeling for Illumination Algorithms
Alexander Hagg. Genetic and Evolutionary Computation Conference 2017
Projektveröffentlichungen
2021
Alexander Hagg:
Discovering the preference hypervolume: an interactive model for real world computational co-creativity.
URL
BibTeX | RIS
Alexander Hagg:
Phenotypic Niching Using Quality Diversity Algorithms.
doi:10.1007/978-3-030-79553-5_12
BibTeX | RIS
2020
Alexander Hagg, Mike Preuss, Alexander Asteroth, Thomas Bäck:
An Analysis of Phenotypic Diversity in Multi-solution Optimization.
doi:10.1007/978-3-030-63710-1_4
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Discovering Representations for Black-box Optimization.
doi:10.1145/3377930.3390221 arXiv
BibTeX | RIS
Alexander Asteroth, Adam Gaier, Alexander Hagg, Jakob Meng, Andreas Priesnitz, Lea Prochnau, Dirk Reith:
AErOmAt Abschlussbericht.
PDF Download doi:10.18418/opus-4850 urn:nbn:de:hbz:1044-opus-48506
BibTeX | RIS
2019
Alexander Hagg, Martin Zaefferer, Jörg Stork, Adam Gaier:
Prediction of neural network performance by phenotypic modeling.
doi:10.1145/3319619.3326815 arXiv
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Are quality diversity algorithms better at generating stepping stones than objective-based search?.
doi:10.1145/3319619.3321897
BibTeX | RIS
Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Modeling User Selection in Quality Diversity.
doi:10.1145/3321707.3321823 arXiv
BibTeX | RIS
2018
Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Prototype Discovery Using Quality-Diversity.
doi:10.1007/978-3-319-99253-2_40 arXiv
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Data-Efficient Design Exploration through Surrogate-Assisted Illumination.
doi:10.1162/evco_a_00231 PMID arXiv
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Data-efficient Neuroevolution with Kernel-Based Surrogate Models.
doi:10.1145/3205455.3205510 arXiv
BibTeX | RIS
2017
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Data-Efficient Exploration, Optimization, and Modeling of Diverse Designs through Surrogate-Assisted Illumination.
doi:10.1145/3071178.3071282 arXiv URL
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Aerodynamic Design Exploration through Surrogate-Assisted Illumination.
doi:10.2514/6.2017-3330 URL
BibTeX | RIS
Alexander Hagg:
Hierarchical Surrogate Modeling for Illumination Algorithms.
doi:10.1145/3067695.3082495 arXiv
BibTeX | RIS
Alexander Hagg, Maximilian Mensing, Alexander Asteroth:
Evolving Parsimonious Networks by Mixing Activation Functions.
doi:10.1145/3071178.3071275 arXiv
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Feature Space Modeling Through Surrogate Illumination.
arXiv doi:10.48550/arXiv.1702.03713
BibTeX | RIS
Aerodynamic Design Exploration through Surrogate-Assisted
Illumination
(Best Student Paper -- Multidisciplinary Design Optimization)
Gaier, Adam, Alexander Asteroth, and Jean-Baptiste Mouret. AIAA Aviation and Aeronautics Forum 2017
Data-Efficient Exploration, Optimization, and Modeling of Diverse Designs through Surrogate-Assisted
Illumination
(Best Paper -- Complex Systems)
Gaier, Adam, Alexander Asteroth, and Jean-Baptiste Mouret. Genetic and Evolutionary Computation Conference 2017
Hierarchical Surrogate Modeling for Illumination Algorithms
Alexander Hagg. Genetic and Evolutionary Computation Conference 2017
Projektveröffentlichungen
2021
Alexander Hagg:
Discovering the preference hypervolume: an interactive model for real world computational co-creativity.
URL
BibTeX | RIS
Alexander Hagg:
Phenotypic Niching Using Quality Diversity Algorithms.
doi:10.1007/978-3-030-79553-5_12
BibTeX | RIS
2020
Alexander Hagg, Mike Preuss, Alexander Asteroth, Thomas Bäck:
An Analysis of Phenotypic Diversity in Multi-solution Optimization.
doi:10.1007/978-3-030-63710-1_4
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Discovering Representations for Black-box Optimization.
doi:10.1145/3377930.3390221 arXiv
BibTeX | RIS
Alexander Asteroth, Adam Gaier, Alexander Hagg, Jakob Meng, Andreas Priesnitz, Lea Prochnau, Dirk Reith:
AErOmAt Abschlussbericht.
PDF Download doi:10.18418/opus-4850 urn:nbn:de:hbz:1044-opus-48506
BibTeX | RIS
2019
Alexander Hagg, Martin Zaefferer, Jörg Stork, Adam Gaier:
Prediction of neural network performance by phenotypic modeling.
doi:10.1145/3319619.3326815 arXiv
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Are quality diversity algorithms better at generating stepping stones than objective-based search?.
doi:10.1145/3319619.3321897
BibTeX | RIS
Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Modeling User Selection in Quality Diversity.
doi:10.1145/3321707.3321823 arXiv
BibTeX | RIS
2018
Alexander Hagg, Alexander Asteroth, Thomas Bäck:
Prototype Discovery Using Quality-Diversity.
doi:10.1007/978-3-319-99253-2_40 arXiv
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Data-Efficient Design Exploration through Surrogate-Assisted Illumination.
doi:10.1162/evco_a_00231 PMID arXiv
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Data-efficient Neuroevolution with Kernel-Based Surrogate Models.
doi:10.1145/3205455.3205510 arXiv
BibTeX | RIS
2017
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Data-Efficient Exploration, Optimization, and Modeling of Diverse Designs through Surrogate-Assisted Illumination.
doi:10.1145/3071178.3071282 arXiv URL
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Aerodynamic Design Exploration through Surrogate-Assisted Illumination.
doi:10.2514/6.2017-3330 URL
BibTeX | RIS
Alexander Hagg:
Hierarchical Surrogate Modeling for Illumination Algorithms.
doi:10.1145/3067695.3082495 arXiv
BibTeX | RIS
Alexander Hagg, Maximilian Mensing, Alexander Asteroth:
Evolving Parsimonious Networks by Mixing Activation Functions.
doi:10.1145/3071178.3071275 arXiv
BibTeX | RIS
Adam Gaier, Alexander Asteroth, Jean-Baptiste Mouret:
Feature Space Modeling Through Surrogate Illumination.
arXiv doi:10.48550/arXiv.1702.03713
BibTeX | RIS