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We investigated structures derived from a-quartz- and ZSM-5-crystallites in different orientations and

combinations. Gaps are introduced into the configurations in order to produce surfaces. However,

interfaces can be formed by coalescence of surfaces. The structural and thermal properties of the thus

generated interfaces and of the remaining surfaces are qualitatively discussed. Applying different sizes

of the gaps between the structures allowed the monitoring of structural changes, partial pair-

correlation functions and bond-angle distributions. Furthermore, we discuss the influence of the

thermal or temperature distribution in the thus constructed materials. We report about the qualitative

differences using both constant temperatures and temperature gradients.
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1. Introduction

In nano-technology the influences of surface effects, interfaces,
borders and boundaries play a crucial role for the understanding
of material properties important in chemistry and physics. In
biology and life science the behaviour of micelles and vesicles is
also strongly dominated by surfaces. Furthermore, the properties
of surfaces or interfaces are important for the development of
nano-devices in technical applications. Especially the design of
integrated circuits is dominated by the generation of thin films
and nano-wires where the mean free paths of the phonons are
restricted by the size of the nano-devices, and thermal transport
through interfaces and barriers is strongly affected by the Kapitza
resistance [1]. This is a field of both experimental and theoretical
research [2]. The influence of nano-particles on tensile strength,
thermal and mechanical properties of (nano-)composites is
investigated to produce tailoured materials [3]. For a comprehen-
sive review and further reading we address to Ref. [4]. Nucleation
and growth processes of nano-scaled silica have been investigated
experimentally for more than a decade [5], especially the reac-
tions and thermodynamic analysis of nano-particles are in the
focus of technical approaches, where coalescence and sintering
influence catalytic properties and diffusivity of nano-struc-
tures [6]. On the other hand molecular dynamics simulations of
nano-particles study their thermodynamic properties and the
high temperature reactivity [7,8]. One aim of our simulations is
to investigate structural properties and their changes in materials
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with different interfaces or surfaces depending on gap-size and
composition. Another focus is laid on the temperature and energy
distributions in nano-scaled systems caused by structural defects
like gaps, boundaries and borders. The understanding of heat
resistance and energy transfer in materials with boundaries
between crystallites is of importance for the design of devices
on nano-meter scale, since their functionality and life-time are
influenced by temperature, temperature differences and energy
barriers. Especially, if devices are exposed to situations with
temperature changes both the heat flow and the material’s heat
resistivity will become central properties which influence the
behaviour of the materials. Other important applications beside
the construction of electrical devices are the understanding of the
temperature drops in micro- or nano-sized (metallic) contacts
used in cryogenic instruments [9] or the study of temperature
relaxations at interfaces of hetero-structures, e.g. thin (Bi-)films
deposited on silicon [10]. Therefore, we perform molecular
dynamics simulations at both constant temperatures and tem-
perature gradients.

The investigation of nano-materials is a field of continuous
improvement for both practical applications and basic research
[11–13]. The thermodynamic and kinetic properties of materials
are not only ruled by, e.g. low-frequency modes and the so-called
Bose-peak which is shown to be dependent on the degree of
amorphization [14]. The role played by the structures themselves
is also important, since the structure–property relations are
essential for further insights. More global aspects, e.g. the concept
of energy landscape [15,16], use thermodynamic properties of
crystalline structures in order to predict novel materials. The
focus of our investigations is also laid on the energetic develop-
ment of the system under consideration, i.e. the relaxation of the
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structures [17–20]. Other groups report on dynamical processes
[21–25], aging [26–28] and mode-analysis [29–32] in different
amorphous systems. For the simulations we use a classical
molecular dynamics approach which is a state of the art method
for more than three decades [33–36], which is also recently used
for the study of different surface effects [37–40]. Interfaces
between crystals and melts are also subject of numerical inves-
tigations elucidating both kinetic behaviour and free energies
[41–43]. Nevertheless, one should have in mind that in nano-
systems the physics is governed and dominated by quantum
effects which are not considered in this type of simulation. So,
electronic contributions are neglected and only atomic/vibronic
behaviour is taken into account. However, since the system sizes
which we consider exceed 1000 atoms, our simulations could
not easily be transferred to quantum-mechanical calculations,
however these would be helpful. The article is organized as
follows: in the next section we give an overview over the models
and the potential mimicking the atomic interactions, used
throughout the simulations, and describe computational details.
The results of structural and thermal properties are presented in
the third section, followed by a discussion. In the final section we
summarize and give conclusive remarks.
2. Models, potential and computational details

For our investigations we used models based on silicate-
structures—as a-quartz-modification, and zeolite-structures—as
silicalite ZSM-5-form. In order to simulate the influence of grain
boundaries, interfaces and structural gaps on static and dynamic
properties, we constructed crystallites and introduced gaps (e.g.
parallel to the y–z-plane), i.e. we divided the structures into two
parts and separated them by distances ranging from 0 up to 10 Å.
We would like to emphasize that the MD-calculations are done in

vacuo, i.e. there is no substrate on which the configurations are
grown or otherwise deposited. So our structures are not fixed by a
larger base which could act as a medium contributing to the heat
transport or influencing the thermal properties. We investigated
three models: a-quartz2a-quartz, ZSM-5–ZSM-5 and ZSM-52

a-quartz. In detail we built an a-quartz-crystallite comprising
2160 atoms in a box with side-lengths of a¼39.28 Å, b¼25.51 Å
and c¼27.00 Å, respectively. A gap along the x-direction is
constructed by separating the quartz-structure in the middle
(e.g. of the x-axis) and shifting the two parts 0, 0.4, 2.0, 2.8,
4.0 and 8.0 Å apart in such a way that gaps of respective size are
created and the box-length in x-direction is increased from 39.28
to 39.68, 41.28, 42.08, 43.28, and 47.28 Å.

To reduce the influence of surface effects caused by the finite
size of the structures, periodic boundary conditions are estab-
lished, i.e. only one gap is established in the centre of the
structure, since due to periodic boundary conditions the surfaces
of the structure will interact with the opposite ones and are
connected via bonds. The second type of system comprises 1152
atoms of a ZSM-5-crystallite with a¼40.04 Å, b¼19.90 Å and
c¼26.77 Å being its lateral dimensions. We introduce gaps of
size 0, 0.4, 2.0, 2.8, 4.0 and 8.0 Å along the x-direction by cutting
the configuration perpendicular to the y–z-plane and separating
the two sub-structures to the respective distances. Again we
apply periodic boundary conditions to embed the crystallite in a
crystalline surrounding. The third type of configurations which
are under investigation comprise both an a-quartz and a ZSM-5-
structure. In contrast to the previous models we have a mismatch
between the two parts from the beginning of the simulation, i.e.
we have to introduce two gaps instead of one. The first gap is
found in the centre where the structures are put together. The
second gap is due to periodic boundary conditions since the
configurations will not match. One mixed model is generated
from 1296 atoms (576 atoms from a ZSM-5-structure and 720
atoms building an a-quartz-configuration). The structures are
aligned in y-direction and the gaps in the centre are 0.5, 1.0,
5.0, and 10.0 Å and by applying periodic boundary conditions a
gap of 1.0 Å is introduced in the y-direction at the boundary. The
dimensions of the combined crystals are a¼20.02 Å and
c¼27.00 Å, and due to the established gaps the dimension b in
the y-direction will have the values b¼37.56, 38.06, 42.06 and
b¼47.06 Å, respectively. Another alignment comprising 4248
atoms is realized using an a-quartz of 2520 atoms and 1728
atoms forming a ZSM-5-crystal. The two crystallites are aligned
along the x-direction. In this mixed system we constructed six
starting configurations and established two gaps in each with
sizes 0.1/0.2, 0.5/1.0, 1.0/2.0, 1.5/3.0, 2.0/4.0 and 4.0/8.0 Å, the
first value is the size of the gap in the centre and the second
number gives the width of the second gap at the boundary,
respectively. The lateral dimensions in the y- and z-directions
are b¼59.70 Å and c¼27.00 Å, in the x-direction the crystallites a

stretches from a¼39.57, 40.77, 42.27, 43.77, 45.27 to 51.27 Å.
All the above described structures are based on SiO2-config-

urations. For the simulations of the SiO2-structures we used the
potential proposed and fitted by Vashishta et al. [44]. The
potential consists of two-body (including long-range Coulomb
interactions, terms describing damped dispersion and a general
potential type) and three-body terms (described by Stillinger–
Weber potentials [45,46]):

V ¼
XN

i ¼ 1,j4 i

V2ðrijÞþ
XN

i ¼ 1,j4 i,k4 j

V3ðri,rj,rkÞ ð1Þ

in order to reproduce structural and dynamical properties of both
crystalline and amorphous phases. The two-particle interaction
contains a long-range Coulomb part that we treat with Ewald
summation [47,48], and includes terms accounting for the steric
repulsion of the particles and for the polarizability of the atoms.

The two-particle potential is given by

V2ðrÞ ¼
ZiZj

r
þ

Hij

rZij
�

1
2 ðaiZ

2
j þajZ

2
i Þ

r4
expð�r=r4sÞ ð2Þ

Zi is the effective charge and ai is the electronic polarizability of
atom i, and Hij and Zij describe the steric repulsion of atoms i and j.
The three-body-interaction is relevant only for triplets Si–O–Si and
O–Si–O, the other possible combinations (Si–O–O, O–Si–Si, O–O–O,
and Si–Si–Si) are neglected. The three-particle-term favours the
development of the tetrahedral angle at the silicon and of an angle
Y0 � 1403 at the corner sharing oxygen. The functional form of the
three-particle-term is

V3ðrÞ ¼ Bijkexp
1

rij�r0
þ

1

rik�r0

� �
ðcosðYijkÞ�cosðY0ÞÞ

2, rij,rikor0

V3ðrÞ ¼ 0, rij,rikZr0 ð3Þ

All parameters are given in Ref. [44]. The applicability of this
potential to surfaces, interfaces or dynamics of structural defects (e.g.
crack propagation) of both crystalline silica conformations and
amorphous silica have been shown in several studies [49–52] in
which the coalescence of surfaces and cavities have been investigated.

With molecular dynamics (MD) one can simulate a variety of
complex structures [53–57]. In order to determine structural,
dynamic and thermodynamic quantities, one typically explores
correlation functions, e.g. determination of the van Hove correla-
tion gives insight into the radial distribution of atomic distances,
and the calculation of the velocity autocorrelation [58] or dis-
placement autocorrelation [59] reveals the vibrational spectrum
of configurations. After initially introducing surfaces and gaps of
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different sizes into the system, the structure is monitored for
typically 50 000 molecular dynamics time steps (each 1.0 or
2.0 fs) with a velocity Verlet integration scheme at a temperature
of 600 K, i.e. well below the glass transition temperature. For
several structures we performed MD-runs up to 5 sns in order to
test the stability and equilibration of the systems. We applied
periodic boundary conditions to reduce surface effects caused by
the system size. The starting volume is conserved within the
simulation and we monitored the virial of the configuration to
account for internal pressure. Nevertheless, one should have in
mind that due to the fact that the simulations are performed in

vacuo and that the gaps lead to ‘‘free’’ volume or additional space
which gives rise to relaxation processes.

The additional space also causes a decrease in the density r. In
order to account for the structural homogeneity of the systems,
we calculate the standard deviation of the density within a
configuration. To do so, we split the structures into 125 sub-
cubicles (small enough to give a reasonable statistics and large
enough to contain an average number of at least 10 atoms) for
which we calculated the densities and the respective relative
standard deviation Dr=r. One can imagine that the existence of
voids, pores, channels and gaps on one hand, and interfaces and
different structural species on the other hand increases the
standard deviation of the mass density. Another structural prop-
erty which clearly exhibits the crystalline or disordered status of
matter is the so-called total pair-correlation function gðrÞ:

gðrÞ ¼
nðrÞ

4pr2rNDr

� �
ð4Þ

with nðrÞ being the number of atoms at a distance r in a sphere
with thickness Dr around a reference atom, rN is the number
density of atoms in the system and / S stands for the averaging
over configurations which are calculated throughout the mole-
cular dynamics simulations. In our simulation we mainly focus on
the partial pair-correlation functions gab:

gabðrÞ ¼
nabðrÞ

4pr2rbDr

* +
ð5Þ

where nab is the number of species b in a shell of thickness Dr and
radius r around atom type a and rb is the number density of atom
b with a,b¼ Si,O. Measuring the bond angles reveals the short-
range structure of the configuration, i.e. the building units and
their connectivity. Since our systems consist of two atom-types
we have six types of bond angles YABC, with A–B–C being Si–O–Si,
O–Si–O, Si–Si–O, O–O–Si, Si–Si–Si, and O–O–O, which are calcu-
lated using the following equation:

YABC ¼ arccos
rBArBC

jrBAjjrBCj

� �
ð6Þ

with rBA and rBC being the vectors between the atoms A and B or C
and B, respectively and with B being the central atom from which
the angle is measured to the adjacent atoms A and C. From
previous simulations of both a-quartz and ZSM-5-type of zeolite
the distances of the neighbouring atoms are well known and we
use as cut-off-distances for rSiO¼2.2 Å, rOO¼3.0 Å and rSiSi¼3.6 Å,
these values coincide with first minima of the partial pair-
correlation functions [60,61].

In order to measure the amorphicity of the structures, we
introduce the distance between the starting reference phase and
the optimized configurations as quantifiable observable. The
atomic shifts are measured from the squared displacements:

DR2 ¼
X

n

ðRi
n�RnÞ

2
ð7Þ

where Ri
n is the position vector of atom n in its position in

minimum i of the potential energy surface and Rn is the position
of atom n in the reference configuration. The total displacement R

which accounts for a structural change is given by R¼
ffiffiffiffiffiffiffiffiffi
DR2
p

and
measured in Å.

The temperatures in the simulations are determined from the
velocities of the atoms. In canonical simulations (NVT-ensemble)
the velocities of the atoms are rescaled each 100 time-steps in
order to keep the temperature constant. In runs where tempera-
ture gradients are applied, the temperatures of two layers
(comprising 10% of atoms each) are fixed at 300 and 900 K,
respectively, by rescaling the atomic velocities at each time-step,
all other atoms are allowed to evolve according to Newton’s law.
The spatial distribution of the temperature is calculated by
dividing the volume into 10 sectors of equal spatial size along
the alignment of the crystalline structure, i.e. there could be
sector comprising only a few atoms of the structure or even no
atom, since these sectors or layers are located either close to the
gap or completely in the gap. Furthermore, due to atomic shifts
the number of atoms comprising these layers will fluctuate, and
consequently the temperature of the layers will fluctuate,
respectively.
3. Results

The investigations of the influence of boundaries and gaps
on structural properties, i.e. pair-correlation functions and
bond-angle distributions, and on temperature distributions are
performed for three different types of systems. We constructed an
a-quartz-crystallite on an a-quartz-configuration comprising
2160 atoms aligned in x-direction and separated by 0, 0.4, 2.0,
2.8, 4.0 and 8.0 Å. A second type of structure is investigated by
deposing a ZSM-5-structure on another ZSM-5-configuration in
x-direction using the same gap-sizes as above. The total structure
has a total of 1152 atoms. As a third type of configuration we
considered mixed structures, i.e. combinations of a-quartz and
ZSM-5-zeolite. In contrast to the systems comprising only one
crystalline species, the mixed forms have two gaps. For the mixed
configurations we investigated small structures comprising in all
1296 atoms (720 atoms from an a-quartz-crystallite and 576
atoms from a zeolite-structure are aligned in y-direction) with
gaps of 0.5/1.0, 1.0/1.0, 5.0/1.0, and 10.0/1.0 Å. The first value
gives the size of the central gap and the second number refers to
the gap-size due to periodic boundary conditions. A larger system
combines an a-quartz-crystallite of 2520 atoms and a ZSM-5-
configuration with 1728 atoms and aligns these structures along
the x-direction with two gaps of 0.1/0.2, 0.5/1.0, 1.0/2.0, 1.5/3.0,
2.0/4.0 and 4.0/8.0 Å. Again the first values describe the central
gap, whereas the second number gives the gap-size at the
boundary.

In all three systems a general observation concerning the
coalescence of surfaces can be seen from monitoring the trajec-
tories of the atoms. If the distance between the surfaces is small
enough, the atoms move towards each other, form new bonds and
close the gap. Besides the puzzling individual motions, we
monitored the total displacement R as a more general observable.
From previous simulations the total atomic displacement is
known to be a good quantity for exhibiting (local) relaxations or
for revealing the diffusive character of a system. It is also known
that the (short-time) fluctuations in R follow from the vibrations
underlying the dynamics of the configurations. In Table 1 we
summarize informations for all systems under investigation and
present the values on the applied gap-sizes, corresponding
densities r with the relative standard deviations Dr=r, the total
displacements and averaged atomic shifts for both constant
temperature runs and simulations of temperature gradients.
Those simulations, in which the systems relax in order to close



Table 1
Total displacements and atomic shifts of all simulations are given for both constant temperature and temperature gradient. In the first column the model-systems and their

respective atom numbers are given. In the next column the gap-sizes in the centre of the structures and at the boundary are presented. The third column refers the

corresponding densities and the relative standard deviations, followed by the total and atomic displacements for both set-ups, i.e. values for constant temperature and for

temperature gradients are given.

Type of system,

number of atoms
Gap-size (Å) r (g/cm2)/Dr=r Constant temperature Temperature gradient

Total shift R (Å) Atomic shiftffiffiffiffiffiffiffiffiffiffiffiffi
R2=N

p
(Å)

Total shift R (Å) Atomic shiftffiffiffiffiffiffiffiffiffiffiffiffi
R2=N

p
(Å)

Quartz–quartz, N¼2160 0.0 2.631/0.101 9.72 0.21 9.98 0.21

0.4a 2.605/0.102 10.34 0.22 10.29 0.22

2.0a 2.505/0.105 35.55 0.76 21.73 0.47

2.8a 2.459/0.099 39.08 0.84 39.10 0.84

4.0a 2.392/0.111 46.05 0.99 46.49 1.00

8.0 2.192/0.429 21.64 0.47 20.91 0.45

ZSM–ZSM, N¼1152 0.0 1.780/0.340 14.48 0.43 14.48 0.43

0.4a 1.695/0.347 23.70 0.70 23.70 0.70

2.0 1.664/0.370 23.70 0.70 25.70 0.76

2.8 1.618/0.423 38.48 1.13 41.61 1.23

4.0 1.548/0.527 44.68 1.32 42.99 1.27

8.0 1.483/0.540 34.68 1.02 32.38 0.95

Quartz–ZSM, N¼1296 0.5/1.0b 2.076/0.319 60.87 1.69 60.26 1.67

1.0/1.0b 1.997/0.350 77.52 2.15 80.04 2.22

5.0/1.0a 1.878/0.332 69.50 1.93 68.89 1.91

10.0/1.0a 1.679/0.439 65.36 1.82 66.41 1.84

Quartz–ZSM, N¼4248 0.1/0.2b 2.195/0.208 48.85 0.75 24.84 0.38

0.5/1.0b 2.130/0.254 83.02 1.27 79.12 1.21

1.0/2.0a 2.055/0.350 100.87 1.55 101.90 1.56

1.5/3.0a 1.984/0.395 110.25 1.69 111.45 1.71

2.0/4.0a 1.919/0.473 123.76 1.90 126.08 1.93

4.0/8.0a 1.694/0.557 172.00 2.64 163.15 2.50

a In case of only one gap, an interface is generated, if there are two gaps, the smallest one is closed.
b Two gaps are present in the starting structures which are both closed via coalescence of the surfaces.

Fig. 1. Left: Starting configurations of the a-quartz2a-quartz-structures compris-

ing 2160 atoms with gaps of 4 Å (top) and 8.0 Å (down) thickness. Yellow (light-

grey) and red (dark-grey) spheres represent Si and O atoms, respectively. View is

along the [0 0 1] direction. Right: Configurations after a constant temperature run

with a total displacement of DR� 46 and 22 Å from the starting configuration,

respectively. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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the gaps, are marked and one can observe an increase of the
atomic shifts with decreasing densities (see e.g. the simulations
marked with footnote a of the quartz–quartz systems and those of
the large quartz–ZSM structures show a linear increase of the
atomic shifts with increasing gap-sizes.) This hints towards a
combination of the complete displacement into a ‘‘diffusive’’ part
(in order to overcome the gap) and a local relaxational part.

At the beginning of the simulation the systems are in non-
equilibrium states and therefore, one can observe large fluctua-
tions in all monitored variables during which the systems
equilibrate to lower energetic states. This can also be seen in
the total displacement, which shows a wave-like behaviour at the
beginning of the simulation, followed by the typical small
fluctuations. The ‘‘first waves’’/peaks in R—in connection with
the individual trajectories—results from the coalescence of the
surfaces. Astonishingly, for all those cases, in which we observed
the coalescence of the surfaces, one can see that this coalescence
is finished within a few pico-seconds, and is rather independent
of both the gap-size and the system-type. However, these
motions lead to an ‘‘impact’’ velocity of the surfaces of the order
O(102 m/s). After the coalescences of the surfaces are finished,
relaxations—also due to the impacts—take place. Here, the types
of these relaxations are not studied in detail and we refer to other
publications which in detail describe heterogeneities and non-
Gaussianities observed in relaxations [62–64].

3.1. a-Quartz2a-quartz

For the a-quartz2a-quartz-structures comprising 2160 atoms
we performed MD-runs at an averaged temperature of 600 K with
an observation time of 100 ps. The simulation of interfaces and
boundaries is performed by introducing different gap-sizes (0, 0.4,
2.0, 2.8, 4.0 and 8.0 Å), i.e. we split the structure into two parts
and separate the two sub-structures, periodic boundary condi-
tions are applied in all directions. In a second modelling route we
would like to estimate the influence of temperature gradients by
fixing the temperature of two layers at temperatures of 300 and
900 K, respectively. Using Molden [65] we display configurations
for different gap-sizes in Fig. 1. On the left side of the figure
starting configurations with gap-size 4 Å (top) and 8.0 Å (down)
are shown. The right panel gives the resulting configurations after



 0
 10
 20
 30
 40
 50
 60
 70
 80

 0  1  2  3  4  5  6  7  8  9  10

g(
r)

r [Å]

 0
 10
 20
 30
 40
 50
 60
 70
 80

 0  1  2  3  4  5  6  7  8  9  10

g(
r)

r [Å]

 0
 10
 20
 30
 40
 50
 60
 70

 0  1  2  3  4  5  6  7  8  9  10

g(
r)

r [Å]

Si-O-distance distribution Si-Si-distance distributionO-O-distance distribution

Fig. 2. The partial pair-correlation functions for the a-quartz2a-quartz-structures are shown for the calculations using constant temperature. The lines in each figure

correspond to different gap-sizes between the structures: 0, 0.4, 2.0, 2.8, 4.0 and 8.0 Å (bottom-up). The insets are an enlargement of the intermediate regions.
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a constant temperature run with the respective displacements
from the starting configurations. From the total displacements
one can calculate the averaged atomic displacement, for a gap
with a size of 4 Å each atom is displaced by 0.99 Å, and for the
largest gap-size an atom is on average displaced by 0.47 Å.

From our simulations we find that a starting gap of 4.0 Å at the
beginning of the simulation is closed by the coalescence of the
two surfaces. This fast global equilibration is performed within
few ps and leave most of the observation time of 100 ps for local
structural rearrangements.

In the case of a starting gap-size of 8 Å between the two
a-quartz-crystallites the observation time is much too short in
order to significantly close the gap. At the end of the observation
time the surfaces have developed some defects and comprise
partially disordered regions. To have a closer look at the struc-
tures we calculated the partial pair-correlation functions. In Fig. 2
we show the pair-correlation functions gðrÞ for the pairs Si–O,
O–O and Si–Si, respectively. The simulations were performed at a
constant temperature of about 600 K. In each figure the different
lines represent the different gap-sizes from 0 Å (bottom) up to
8.0 Å (top), respectively. For the constant temperature runs the
insets show the distance-distributions at intermediate ranges.

The Si–O-distance distributions are dominated by the first
neighbour peak for all gap-sizes. The inset shows that the first
peaks of the Si–O-distances in the intermediate region broaden
and are slightly shifted to larger values. However, for the largest
gap-size of 8 Å the peaks in the structural intermediate-range
order are shifted ‘‘back’’ to the same distances as in the case
without a gap. In the O–O-distance distribution the first peak at
r¼2.6 Å broadens with increasing gap-size and a shoulder or a
smaller second peak develops. To recognize differences in the
structures with different gap-sizes one should have a closer look
at the intermediate-range order, here we can see the similarity of
those structures which have either no gap or a very small gap. For
structures with a medium gap-size (2.0 Å up to 4.0 Å) we observe
a shift to higher distances in the intermediate-range order. Only
in the case of the largest applied gap (8 Å) the distances are
shifted to slightly shorter values and a broadened peak pattern
occurs.

Similar to the O–O distribution a small broadening of the first
peak in the Si–Si-distances is found with increasing gap-size.
At intermediate distances we find sharp peak distributions for
gap-sizes up to 0.4 Å, for larger gap-sizes the peaks broaden and
additional peaks occur. The crystallinity of the structures can be
seen from some peaks, well beyond the next-nearest neighbour
distances, which reflect the lattice constants at a¼4.91 Å and
c¼5.4 Å. The peak at 7.3 Å is the hypotenuse of the lattice
constants a and c, the hexagonal symmetry of a-quartz can be
identified in the peak at 8.5 Å (� 2 � a � cosð303

Þ). The peak at 9.8 Å
is the double of the lattice constant a. Since the silicon atoms are
the ‘‘back-bone’’ of the network, the above mentioned distances
are clearly present in the partial pair-correlation of the Si–Si
distribution for gap-sizes up to to 0.4 Å. For larger gap-sizes these
peaks broaden or split into several additional peaks. These peaks
(caused by the crystalline structure) also show up in the
O-O-distances, however these peaks exhibit the greater flexibility
of the oxygens in comparison to the silicon atoms since the
intensity of the peaks corresponding to the lattice constants are
reduced compared to the Si–Si-distances, and a broadening and
splitting of the lattice-peaks can already been observed for the
smallest gap-size. Since the results of the partial pair-correlation
function found for the simulation of temperature gradient are
very similar to those determined for constant temperature runs,
we do not present the graphs.

The bond-angle distributions shown in Fig. 3) result from
constant temperature runs. Our findings exhibit clearly the tetra-
hedral short-range structure. However, all possible bond angles
show both a slight broadening of the peaks and shifting of the
peak positions with increasing gap-size (from bottom to top
the gap-sizes are 0, 0.4, 2.0, 2.8, 4.0 and 8.0 Å). The simulations of
the structures subjected to temperature gradients show nearly the
same angle distributions, and therefore, the bond-angle distributions
from runs using temperature gradients are not shown.

In detail we observe the O–Si–O distribution to have a peak-
position at 1091 which is a strong hint towards the existence of
only slightly distorted tetrahedrons as basic structural unit,
shoulders and side peaks occur for gap-sizes larger than 2.8 Å,
this result correlates with the broadening of the first peak of the
O–O-distance in Fig. 2. The Si–O–Si distribution has a peak-
position at 1451 which is shifted to 1551 for gap-sizes from
0.4 to 4.0 Å. In the case of a gap-size of 8 Å the peak-position is
shifted (back) to the position at 1401. Since this distribution is
much smaller compared to the one found in silica glasses [60] the
overall order of the network is conserved. In the Si–Si–O angle
distribution the peak around 201 stems from two silicons belong-
ing to the same oxygen. This peak is directly connected to the
Si–O–Si distribution, and similar to this distribution we observe a
slight shift of this peak. If the oxygen is not the bridging atom
between the two silicons and is only neighbour to the ad-atom
the angle is between 901 and 1301. The O–O–Si angle distribution
shows a peak at 351 which is caused by oxygens belonging to the
same tetrahedron, this result is in direct connection to the sharp
tetrahedral peak found in the O–Si–O angle distribution. This peak
is stable for all gap-sizes which is—again—a strong hint towards
the stability of the tetrahedrons as building units. Since the
central oxygen bridges two tetrahedrons, the peak distribution
between 1101 and 1701 stems from the fact that the second O
belongs to the (via corner-sharing by the first O) bridged tetra-
hedron (another Si). For the Si–Si–Si angle we find relatively sharp
peaks between 901 and 1501 which will broaden with increasing
gap-sizes. The strong peak at 601 in the O–O–O angle distribution
(for all gap-sizes) is caused by three O which belong to the same
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Si-tetrahedron. If the oxygens belong to different tetrahedrons the
O–O–O angles are distributed from 801 to 1601.

Typically the broadening of peaks (especially of structural
origin) is explained and caused by influences of the temperature.
In Fig. 4 we show the temperature T calculated in sectors/layers
(which have an equal size of 10% along the x-direction) vs. the
position of the layers. On the left side of the figure the tempera-
tures for structures of different (starting) gap-sizes are shown
(0, 0.4, 2.0, 2.8, 4.0 and 8.0 Å from top to down). During the
simulation no temperature gradients are applied. The tempera-
tures are averaged over the last 20 ps and the standard deviations
are calculated, respectively. If there is no gap present in the
structure, a constant temperature can develop throughout the
complete configuration (as can be seen in the uppermost plot on
the left part of the figure). The initially introduced structures into
the gap-sizes (separation of two sub-configurations up to 4 Å) can
be closed and a constant temperature of 600 K is found in all
layers of the structure. Typically, the standard deviation of the
layers in the bulk, i.e. not the surface or the interface is about
5–10%. Only for the largest gap-size of 8 Å the barrier is not closed
and a slightly larger standard deviation of the temperature at the
boundary is observed. On the right side of the figure we show the
temperature distribution of MD-simulations with temperature
gradients (shown as dotted lines). For starting gap-sizes up to 4 Å
in the structure the gradient can develop, since the gaps are
closed and the energy can flow. If there are gaps between the two
sub-configurations the temperature gradient cannot clearly
develop since close to the gap the flow of energy is reduced and
the temperature of the sectors close to the gaps deviates from the
theoretical gradient line, i.e. close to the layer with low tempera-
ture the layers will have a reduced temperature and in the
vicinity of the high-temperature layer the atoms develop higher
kinetic energies. In case that the gap is not closed, the simulations
using constant temperature are characterized by a change in the
temperature deviation, and in the runs where we applied tem-
perature gradients, a clear temperature jump of roughly 450 K is
developed within a few Å instead of a continuous temperature
gradient. This rather large deviation of the temperature of the
surface layer is caused by the small number of atoms, since only
less than 4% of the ensemble is comprising this sector and even
this number fluctuates. This fluctuation is stable for even larger
simulation periods (upto 5 ns).

3.2. ZSM-5–ZSM-5

For the ZSM-5 on ZSM-5-configurations comprising 1152
atoms we performed MD-runs at an averaged temperature
of 600 K with an observation time of 100 ps and six different
gap-sizes (0, 0.4, 2.0, 2.8, 4.0 and 8.0 Å). In a second modelling route
we would like to estimate the influence of temperature gradients by
fixing the temperature of two layers at temperatures of 300 and
900 K, respectively. In Fig. 5 we plot structures of ZSM-5 on ZSM-5.
For the smallest gap with a width of 0.4 Å the surfaces coalesce, and
a nearly perfect crystalline structure is built. In all other simulations
with larger gap-size the surfaces do not coalesce. However, during
the simulation partially disordered surfaces are developed where
defects, e.g. new rings are formed.

From the total displacement one can derive the averaged
atomic shifts, in the case of a starting gap with a width of 0.4 Å
the atoms move 0.70 Å, and for the largest gap we find a
displacement of 1.02 Å.

One should have in mind that different physical processes
contribute to the motions. On one side there are thermal and
vibrational motions which depend on temperature and do typi-
cally not exaggerate ca. 10% of the nearest-neighbour distance, on
the other side there are contributions from relaxation and
motions leading to the coalescence of the surfaces.

The results for the pair-correlation functions found in structures
which are exposed to temperature gradients are very similar to the
one described for the constant temperature simulations. Therefore, in
Fig. 6 we show the pair-correlation functions g(r) for the pairs Si–O,
O–O and Si–Si, respectively, which stem from simulations performed
at a constant temperature of about 600 K. In each figure the six
different gap-sizes are shown from 0 Å (bottom) up to 8.0 Å (top). For
the Si–O-distances we observe for all gap-sizes a strong and sharp
first peak (nearest neighbour distance rSiO¼1.65 Å). In the
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Fig. 4. The temperature distributions are displayed for the a-quartz2a-

quartz-structures with different gaps between the crystallites (0, 0.4, 2.0, 2.8,

4.0 and 8.0 Å, from top to down). Left side: No temperature gradient is applied

during the MD-simulations. Right side: During the simulations temperature

gradients are applied, which are depicted by the dotted lines.

Fig. 5. Left: Starting configurations of the ZSM–ZSM-structures comprising 1152

atoms with gaps of 0.4 Å (top) and 8.0 Å (down) thickness. Yellow (light-grey) and

red (dark-grey) spheres represent Si and O atoms, respectively. View is along the

[0 1 0] direction. Right: Configurations after a constant temperature run with total

displacement of DR� 24 and 35 Å, respectively. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)
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intermediate-range order a very slight broadening with increasing
gap-size is observed. The peak at the first O–O-distance at 2.6 Å is
quite sharp for all gap-sizes. This observation correlates with the
narrow range of the tetrahedral angle (see Fig. 7). The intermediate-
range order shows a very small broadening with increasing gap-size.
For the Si–Si-distances the first peak at rSiSi¼3.1 Å a small shift (to
lower distances) and a slight broadening can be seen, this finding is
connected with the Si–O–Si angle distribution (see Fig. 7). At
intermediate distances a clear shift and broadening of the peaks is
observed.

The bond-angle distributions displayed in Fig. 7 result from
constant temperature runs. As we have previously seen for the
pair-correlation functions, the bond angles from different setups
also exhibit similar distributions for all gap-sizes (from bottom to
top the gap-sizes are 0, 0.4, 2.0, 2.8, 4.0 and 8.0 Å), i.e. no clear
distinction can be made between the different modelling set-up,
since the distributions of simulations with or without gradients
cannot be discerned.

As we have seen from the a-quartz-a-quartz-structures the
building unit is the SiO4-tetrahedron which is only slightly
distorted, since we measure a very sharp peak at 1091 for the
O–Si–O bond angle. The Si–O–Si distribution has the peak-posi-
tion at 1451 for all gap-sizes studied in our investigation, however
with increasing gap-size the broadening of the peak becomes
larger. Since this distribution is much broader compared to the
one found in the quartz-structures, this gives a strong hint to
the floppiness of the ZSM-network comprising flexible rings
which surrounds pores and channels of different diameters. In the
Si–Si–O angle distribution the peak at 151 stems from two silicons
belonging to the same oxygen. This peak is directly connected to
the Si-O-Si distribution, and similar to this rather broad distribu-
tion we observe a broad angle distribution. If the oxygen is not
the bridging atom between the two silicons and is only neighbour
to the ad-atom, the angle distributions range between 901 and
1301 without any prominent features. The O–O–Si angle distribu-
tion shows a very prominent peak at 351 which is caused by
oxygens belonging to the same tetrahedron, as we have seen for
the quartz simulations. This result is in direct connection with the
sharp tetrahedral peak in the O–Si–O angle distribution. This peak
is stable for all gap-sizes which is -again- a strong hint for the
stability of the tetrahedrons as building units. The peak distribu-
tion between 1101 and 1701 is much less pronounced compared
to the results found in the a-quartz-structures, which points to
a much less rigid network in the zeolite-configurations. For the
Si–Si–Si angle distribution we find broad distribution of peaks
between 901 and 1501 which points to the different ring-sizes.
With increasing gap-sizes the distribution will become smoother
and even broader and reflect the additional ring-structures
formed at the surfaces. The O–O–O angle distribution is governed
by a strong peak at 601 (for all gap-sizes) which is caused by three
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O which belong to the same Si-tetrahedron. If the oxygens belong
to different tetrahedrons the O–O–O angles are broadly distrib-
uted from 801 up to 1801.

In Fig. 8 we show the temperature distribution in the ZSM-5
on ZSM-5-structures and plot the temperature T calculated in
layers (the thickness of the layers is again 10% of the system-size)
vs. the position of the layers. On the left side of the figure the
temperatures for structures of different gap-sizes are shown
(0, 0.4, 2.0, 2.8, 4.0 and 8.0 Å from top to bottom). During the
simulations no temperature gradients are applied. The tempera-
ture of each layer is averaged over the last 20 ps and the standard
deviations are calculated, respectively. If there is no gap or only a
small gap (0.4 Å) present in the structure a constant temperature
can develop throughout the complete configuration (as can be
seen in the two uppermost plots on the left part of the figure).
Splitting the structure into two parts and separating the two
sub-configurations through gaps of distances 2.0, 2.8 and 4.0 Å leads
to an increase of the temperature deviation (kinetic energy) at the
border -up to three times larger than the average temperature
deviation- with increasing gap-size. The increasing standard
deviation of the temperature correlates the rather small number
of atoms comprising the layers at the surface and since the atom
number of the surface layer fluctuates all properties (e.g.
velocities, temperature, density) changes, respectively. For the
largest gap of 8 Å we observe that the range from 20 to 25 Å is
filled with atoms only in the last part of the MD-simulation which
leads to an—on average—smaller temperature.

On the right side of the Fig. 8 we show the temperature-
distribution of MD-simulations with temperature gradients (shown
as dotted lines). In the case that there is no gap or a very small gap
in the structure the layers can develop a clear temperature gradient.
If there are larger gaps between the two sub-configurations the
temperature gradient cannot clearly develop since close to the gap
the flow of energy is reduced and the temperature of the layers/
sectors close to the gaps deviate from the theoretical gradient line,
i.e. close to the layer with low temperature the layers will have a
reduced temperature and in the vicinity of the high-temperature
layer the atoms develop higher kinetic energies. The atoms at the
boundary develop a rather high standard deviation of their kinetic
energies which lead to a high temperature deviation at the gap.

In the case of the largest gap we observe for the simulation
with temperature gradient that the gap is filled with a small
number of atoms (o 0.4%) at the end of the simulation which will
lead to an extremely high standard deviation. However, the most
important difference of the runs with temperature gradients
compared with the constant temperature simulations is the



 0
 100
 200
 300
 400
 500
 600
 700

 0  5  10  15  20  25  30  35  40

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0  5  10  15  20  25  30  35  40

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700

 0  5  10  15  20  25  30  35  40

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0  5  10  15  20  25  30  35  40

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700

 0  5  10  15  20  25  30  35  40  45

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0  5  10 15 20  25 30 35  40 45

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0  5  10  15  20  25  30  35  40  45

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0  5  10 15 20  25 30 35  40 45

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0  5  10  15  20  25  30  35  40  45

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0

 200

 400

 600

 800

 1000

 1200

 0  5  10 15 20  25 30 35  40 45

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0  5  10 15 20 25 30 35 40 45 50

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0  5  10 15 20 25 30 35 40 45 50

T
em

pe
ra

tu
re

 [
K

]

Layer [Å]

Fig. 8. The temperatures and their standard deviations are displayed for the layers

of the ZSM–ZSM-structures with different gaps between the crystallites (0, 0.4,

2.0, 2.8, 4.0 and 8.0 Å) from top to bottom. Right: No temperature gradient is

applied during the MD-simulations. Left: During the simulations temperature

gradients are applied, which are depicted by the dotted lines.

Fig. 9. Left: Starting configurations of the a-quartz2ZSM-5-structures comprising

1296 atoms with gaps of 1.0/1.0 Å (top) and 10.0/1.0 Å (down) thickness. Yellow

(light-grey) and red (dark-grey) spheres represent Si and O atoms, respectively.

View is along the [0 0 1] direction. Right panel: Configurations after a constant

temperature run with respective total displacements of DR� 78 and 65 Å. (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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development of a clear temperature jump of 500 K if surfaces are
present in the structures. These deviations are stable for observa-
tion times of at least 2 ns.

3.3. a-Quartz2ZSM-5

We constructed two mixed configurations, a small system
with 1296 atoms and a larger model comprising 4228 atoms.
MD-simulations are again performed at T¼600 K.
The small system is built using different spaces (0.5/1.0, 1.0/
1.0, 5.0/1.0, and 10.0/1.0 Å) between the a-quartz- and ZSM-5-
configurations which are aligned along the y-direction. In a
second modelling route we would like to estimate the influence
of temperature gradients by fixing the temperature of the layers
at temperatures of 300 and 900 K, respectively. Two examples of
the structures are depicted in Fig. 9. In the gap-sizes of up to 1.0 Å
the surfaces coalesce to build interfaces which exhibit a rather
disordered state. However, these structures are closed and the
gaps vanish within the observation time. In the case of larger
central gaps, the ‘‘inner’’ surfaces do not coalesce, however the
smaller gap is closed caused by the coalescence of the surfaces
due to periodic boundary conditions. The resulting interface and
the remaining surfaces show a high degree of disorder or
amorphization. The atomic displacements with values 2.15 and
1.82 Å, for gap-sizes 1.0/1.0 and 10.0/1.0 Å, respectively, reflect
the fact that in the latter system only one gap (at the boundary) is
closed whereas in the first model two gaps are closed.

In Fig. 10 we show the pair-correlation functions gðrÞ for the
pairs Si–O, O–O and Si–Si, respectively. The simulations were
performed at a constant temperature of about 600 K. In each
figure the four different gap-sizes are shown from 0.5 Å (bottom)
up to 10.0 Å (top). For the Si–O-distances we observe for all
gap-sizes a strong and sharp first peak (nearest neighbour distance
rSiO¼1.65 Å). In the intermediate-range order no clear differences
between the different gap-sizes can be discerned. The peak at the
first O-O-distance at 2.6 Å is quite sharp for all gap-sizes. This
observation correlates with the narrow range of the tetrahedral
angle (see Fig. 11). The intermediate-range order seems to be
independent of the gap-size. For the Si–Si-distances the first peak
at rSiSi¼3.1 Å reveals a slight broadening with increasing gap-size,
this finding is connected with the Si–O–Si angle distribution (see
Fig. 11). Again there is no strong difference for the different gap-sizes
at intermediate distances of the peaks.

No influence of the temperature gradient on the structure can
be seen, i.e. the partial pair-correlation functions found in
structures which are exposed to temperature gradients have the
same patterns of distances compared to the constant temperature
simulations.

The bond-angle distributions shown in Fig. 11 results from
constant temperature runs. As we have previously seen for the
pair-correlation functions the bond angles also show similar
distributions for all gap-sizes (from bottom to top the gap-sizes
are 0.5, 1.0, 5.0 and 10.0 Å). Similar to the partial pair-correlation
functions the bond-angle distributions do not reveal differences
from the different modelling set-ups, i.e. the distributions of
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Fig. 11. We show the bond-angle distributions for the a-quartz2ZSM-structures from runs without temperature gradients. The different lines in each figure correspond to
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A. Brinkmann et al. / Physica B 406 (2011) 2931–29472940
simulations with or without gradients cannot be discerned. As we
have seen from the simulations comprising quartz- or ZSM-5-
crystallites the building unit is the SiO4-tetrahedron which is
not distorted, since we measure a very sharp peak at 1091 for the
O–Si–O bond angle. For increasing gap-size a slight broadening
can be seen. The Si–O–Si distribution has a peak at 1451 with a
shoulder at 1201 for all gap-sizes studied in our investigation.
However, with increasing gap-size a small broadening of the
(main) peak occurs. Since this distribution is much broader
compared to the one found in the quartz-structures and even
broader than those found in the ZSM-5-configuration, this gives a
strong hint to the floppiness of the mixed network. In the Si–Si–O
angle distribution the peak at 151 stems from two silicons
belonging to the same oxygen. This peak is directly connected
to the Si–O–Si distribution, and similar to this rather broad
distribution we observe a broad angle distribution. If the oxygen
is not the bridging atom between the two silicons and is only
neighbour to the ad atom the angle distributions ranges—without
any striking features—between 901 and 1301. The O–O–Si angle
distribution shows a very prominent peak at 351 which is caused
by oxygens belonging to the same tetrahedron, as we have seen
for the quartz simulations this result is in direct connection to the
sharp tetrahedral peak in the O–Si–O angle distribution. This peak
is stable for all gap-sizes which is—again—a strong hint for the
stability of the tetrahedrons as building units. The peak distribu-
tion between 1101 and 1701 is—similar to the ZSM-network—

much less pronounced compared to the results found in the
SiO2-structures, which points to a much less rigid network. For the
Si–Si–Si angle distribution we find a broad distribution of peaks
between 501 and 1801 which do not depend on the gap-sizes. The
O–O–O angle distribution is governed by a strong peak at 601 (for all
gap-sizes) which is caused by three O which belong to the same
tetrahedron. If the oxygens belong to different tetrahedrons the
O–O–O angles are broadly distributed from 801 to 1801.

The temperature distributions are shown in Fig. 12. The
resulting temperature distribution of runs with constant tem-
peratures are plotted at the left panel of the figure. In the
structures with the smallest gaps the temperature can develop
throughout the system. The temperature distribution is inter-
rupted in those configurations which have a gap-size larger than
5 Å, for the largest gap 10 Å we observe a rather large tempera-
ture deviation in the layer close to the gap, due to the fact that
less than 0.4% of the atoms are present in the surface layer. In this
respect it is interesting to mention that the small gap of 1.0 Å—at
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Fig. 12. The temperatures and their standard deviations are displayed for the layers of the a-SiO22ZSM-structures with different gaps between the crystallites (0.5/1.0,

1.0/1.0, 5.0/1.0, 10.0/1.0 Å from top to bottom). Left side: No temperature gradient is applied during the MD-simulations. Right side: During the simulations temperature

gradients are applied, which are depicted by the dotted lines.
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the left boundary of the structures is closed within all simula-
tions. Using temperature gradients in the simulation we observe
that the smallest gaps are closed during the simulation since
clearly temperature gradients can develop in the structures. For
the larger gap-size the energy distribution is hindered and at the
layers close to the gaps a temperature difference is established
and as seen in the constant temperature runs the layer close to
the gap exhibit a larger temperature deviation compared to the
rest of the system. Since the small gap of 1.0 Å is closed during the
simulation a gradient can develop in that part of the structures.
The second mixed system comprising an a-quartz with
2520 atoms and a ZSM-5-crystallites of 1728 atoms aligned in
x-direction with gap-sizes 0.1/0.2, 0.5/1.0, 1.0/2.0, 1.5/3.0, 2.0/4.0
and 4.0/8.0 Å. We performed both constant temperatures runs at
600 K and applied temperature gradients. Two examples of the
starting structures are shown in the left panel of Fig. 13 whereas
the tempered configurations are given at the right side of the
figure. In all cases, the inner lying surfaces coalesce to form a
partially disordered interface. The gaps (due to periodic boundary
conditions) are only closed for a width less than 1 Å. Therefore, the
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additional interface in the model (shown on top of the figure)
generates further disordered parts in this configuration. In all other
cases, the remaining surfaces (caused by the boundary conditions)
have a less degree of amorphicity compared to the interface in the
centre of the models. From the total displacements one calculates
the atomic shifts from 1.27 up to 2.64 Å, which increase linearly
with the gap-sizes (0.5/1.0 up to 4.0/8.0 Å, respectively).
Fig. 13. Left: Starting configurations of the a-quartz2ZSM-structures comprising

4248 atoms with gaps of 0.5/1.0 Å (top) and 4.0/8.0 Å (down) thickness. Yellow

(light-grey) and red (dark-grey) spheres represent Si and O atoms, respectively.

View is along the [0 0 1] direction. Right panel: Configurations after a constant

temperature run with respective total displacements of DR� 83 and 172 Å. (For

interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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from runs without temperature gradients.
In Fig. 14 we show the pair-correlation functions gðrÞ for the
pairs Si–O, O–O and Si–Si, respectively. The simulations were
performed at a constant temperature of about 600 K. In each
figure the six different combinations of gap-sizes are shown
from the smallest (bottom) up to the largest one (top). For the
Si–O-distances we observe for all gap-sizes a strong and sharp
first peak (nearest neighbour distance rSiO¼1.65 Å). In the inter-
mediate-range order (shown in the inset) one can observe that for
the larger gap-sizes more structural features in the distance
pattern can be seen compared to the small distances. The peak
at the first O–O distance at 2.6 Å is quite sharp for all gap-sizes.
This observation is in agreement with the narrow range of the
O–Si–O bond angle (see Fig. 15). Around 5 Å (see inset) a double
peak is found for larger gap-sizes whereas for small gaps a broad
distribution is found. Also for the first peak of the Si–Si-distances
at rSiSi¼3.1 Å we cannot recognize any broadening of the peak for
the different gap-sizes, this finding is correlated with the Si–O–Si
bond-angle distribution (compare with Fig. 15). Looking at the
inset one clearly observes more structural features with increas-
ing gap-sizes.

The results for the pair-correlation functions found in struc-
tures which are exposed to temperature gradients are comparable
to the constant temperature simulations, i.e. we find the same
patterns of distances. Especially the—at a first glance—

astonishing observation of clear patterns with increasing gap-
sizes is confirmed which may give a hint to the reduced amor-
phicity of the surfaces at the boundaries which do not coalesce to
form a potentially disordered interface. In contrast to the first
mixed model the partial pair correlation of the Si–Si distance
distribution has more features in common with the distribution of
a-quartz, whereas in the Si–O- and the O–O-distributions not all
details of the a-quartz-distributions are reproduced. However,
the partial pair-correlation functions exhibit more peaks similar
to quartz than the respective distributions in ZSM-5. Therefore, in
this type of mixed configuration the ZSM-structure seems to be
more affected by disorder than the a-quartz-part of the system.

The bond-angle distributions displayed in Fig. 15 resulted from
constant temperature runs, from bottom to top the different gap-
sizes are 0.1/0.2, 0.5/1.0, 1.0/2.0, 1.5/3.0, 2.0/4.0 and 4.0/8.0 Å.

As already seen in the partial pair-correlation functions no
clear distinction can be made between the different modelling
set-ups, i.e. the bond-angle distributions of simulations with
temperature gradients are similar to those presented above. The
building unit—based on only slightly distorted SiO4-tetrahedron-
s—is again confirmed since we measure a very sharp peak at 1091
for the O–Si–O bond angle, a dependence from the gap-size
cannot be figured out. The Si–O–Si distribution has a peak-
position at 1451 with a slight shoulder at 1201 for all gap-sizes
studied in our investigation, with increasing gap-size a small
sharpening of the (main) peak occurs. The distribution is broader
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compared to the one found in the quartz-structures, however the
distribution is comparable to those found in the ZSM-5-config-
uration. In the Si–Si–O angle distribution the peak at 151 stems
from two silicons belonging to the same oxygen. In the case that
the oxygen is not the bridging atom between the two silicons and
is only neighbour to the ad-atom the angle distributions ranges
between 901 and 1301, with increasing gap-size a clear peak-
structure develops. The O–O–Si angle distribution shows a very
prominent peak at 351 which is caused by oxygens belonging to
the same tetrahedron, from a geometric point of view this result
is directly connected to the sharp tetrahedron peak in the O–Si–O
angle distribution. This peak is stable for all gap-sizes which
is—again—a strong hint for the stability of the tetrahedrons as
building units. The peak distribution between 1101 and 1701 is
comparable to the results found in the ZSM-structures and gives
hints to the flexibility of the network. For the Si–Si–Si angle
distribution we find a broad distribution ranging from 501 up to
1601 with two small peaks at 901 and 1101 which do not depend
on the gap-sizes. The O–O–O angle distribution is governed by a
prominent peak at 601 (for all gap-sizes) stemming from the three
O-atoms at the same Si-tetrahedron. If the oxygens belong to
different tetrahedron the O–O–O angles are broadly distributed
between 801 and 1801.

The results of the temperature distributions are shown in
Fig. 16. In this type of structure we implemented two different
gap-sizes, the smaller gap is placed in the centre of the structure
whereas the larger gap is situated at the boundary of the system.
The temperature distribution from the runs using constant
temperatures are plotted at the left panel of the figure. During
all simulations the smaller gap—in the centre of the structure—is
closed within the simulation period. Consecutively a constant
temperature can develop through the ‘‘inner’’ part of the struc-
ture. Only for the two smallest gap-sizes at the boundary the
energy can flow and a constant temperature is established
throughout the complete structure. If the gaps at the boundary
are larger than 2 Å one observes that the layer close to the
boundary has a larger temperature deviation than the others,
i.e. despite periodic boundary conditions the surfaces do not
coalesce and cannot close the gap. Application of temperature
gradients in the simulation yield similar results, again we find the
(smaller) gap in the centre to be closed within the observation
time which means that in the inner part of the system a
temperature gradient has developed (for all gap-sizes). For a
gap-size at the boundary which is smaller or equal to 1 Å the
energy can flow via periodic boundary conditions and a tempera-
ture gradient is established in the complete system. However,
if the boundary gap is larger than 2 Å the energy distribution is
hindered and at the layers close to the gap a temperature difference
is established and as seen in the constant temperature runs the
layer close to the gap exhibit a larger temperature deviation
compared to the rest of the system. The rather large temperature
deviations are (again) correlated to the corresponding small and
fluctuating numbers of atoms at the sector close to the surface at
which only o1% of the total ensemble are present.
4. Discussion

The focus of our simulation is mainly laid on structural
and thermal properties of crystalline quartz-systems, zeolite-
structures and combinations of them. The interpretation of our
results is purely qualitative, since quantitative or experimental
results, especially for the temperature distributions are not (yet)
available.

A first striking result of simulating one species of crystals is
that small gaps will be closed and nearly perfect crystalline
boundaries are generated instead of these gaps. In the simulations
of different combinations of systems, small gaps are also closed,
however disordered interfaces are generated, since the crystalline
units are too different to match perfectly. This observation is
independent from the different computational set-ups which we
applied, i.e. whether we use a constant temperature simulation or
apply temperature gradients, the results are similar. Introducing
larger gaps reveal fundamental differences between the a-quartz-
structures and the one based on ZSM-5-configurations. The ten-
dency to overcome gaps is more pronounced in a-quartz compared
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Fig. 16. The temperatures and their standard deviations are displayed for the

layers of the a-quartz2ZSM-structures with different gaps between the crystal-

lites (0.1/0.2, 0.5/1.0, 1.0/2.0, 1.5/3.0, 2.0/4.0 and 4.0/8.0 Å from top to bottom).

Left side: No temperature gradient is applied during the MD-simulations. Right

side: During the simulations temperature gradients are applied, which are

depicted by the dotted lines.
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to ZSM-5, since a gap of 4 Å is closed by the quartz-structure
whereas the ZSM-5-system can only overcome gaps less than 2 Å.

Having a closer look at the different configurations reveal the
influence of structural properties on dynamic behaviour and
thermal/temperature development. First we would like to focus
on the dynamic processes in the structures which lead to the
coalescence of the surfaces at the introduced small gaps. Despite
the fact that the two main systems are based on SiO4-tetrahe-
drons the crystalline arrangements lead to differences in the
densities, i.e. the density of a-quartz is r¼ 2:63 g=cm3 and the
density of ZSM-5-zeolite is r¼ 1:78 g=cm3. Let us first consider
the system with the highest density, i.e. the configurations built
by a-quartz-structures. For these structures we have introduced a
gap in the centre of the configuration, the sizes of the gaps are:
0, 0.4, 2.0, 2.8, 4.0 and 8.0 Å. Since we applied constant volume
simulations the a-quartz-configurations closing a gap up to 4 Å
reduce their density. The coalescence of the surfaces at gaps with
distances up to 4 Å is possible because the atoms near the gap
have enough ‘‘binding’’ sites. However, in order to close the gaps
of this size, it is necessary to slightly distort the building unit and
its crystalline arrangement. Of all simulated systems the pure
a-quartz-structures show the smallest atomic displacements
which hints to a small degree of disorder or to a small number
of defects introduced into these structures. The effects of a
strongly conserved crystallinity are also reflected in the partial
pair-correlations and bond-angle distributions. So, the observed
shifts in the distances (see the slight shifts of the O–O- and Si–Si-
distances shown in Fig. 2) caused by the increase of the O–Si–O
bond angle and especially of the Si–O–Si bond angle (see Fig. 3)
can explain the stretching of the tetrahedrons which is necessary
to overcome the gaps and to cause the coalescence of the surfaces.
Since the nearest-neighbour distance Si–O is not affected
throughout the simulations at least at the moderate temperature
which we considered, a crucial role is played by the bond angles
in the quartz-structure. A further increasing of the Si–O–Si bond
angle up to 1801 without stretching of the Si–O-bond-distance, i.e.
the structure would be transformed in analogy to the a- to
b-cristobalite transition [66], could overcome a gap of 4.8 Å for
the considered system size. However, one should also keep in
mind that not only structural features but also the interatomic
potential between the atoms are responsible for an attractive
behaviour. So at a distance of 8 Å—the largest gap we
simulate—the interactions between a Si- and an O-atom are
governed by the Coulomb-interaction which is reduced to ca.
20% in comparison of the nearest neighbour energy. Therefore, for
a quartz-structure with a gap larger than 8 Å it may be energe-
tically favoured to create new bonds at the central surfaces, even
if this may introduce some surface defects, instead of closing
the gap.

The second type of system which we studied has a much
smaller density. A perfect ZSM-5-structure has a density of only
1:78 g=cm3. Introducing gaps reduces the average density from
1.70 to 1:48 g=cm3. The smaller the density of a system is the
smaller is the possibility of an atom to have interaction partners
within a typical range. This may explain the fact that in the
zeolite-system a gap of 2.8 Å is already sufficient to leave the
system split. In a much denser system like the a-quartz the atoms
have enough possible binding sites at least within a range of 4 Å
to close a gap of respective size. The relatively large averaged
atomic displacements (up to 1.32 Å per atom) point to an
accordingly large flexibility of the ring-structures or to large
structural rearrangements of entities beyond single tetrahedrons,
which are not too much affected in the simulations. Since the
gaps are only closed in case of the smallest one, these atomic
shifts also reflect the degree of disorder and amorphicity intro-
duced into the structures. This observation is also supported by
previous simulations of structural properties of zeolite-based
systems from which we learned that the flexibility of the
structure is caused by the variability to generate ring-structures
[61]. Having this in mind, one can argue that it is energetically
favourable for the atoms to form small rings together with the
neighbouring atoms and thereby reducing the number of dangling



A. Brinkmann et al. / Physica B 406 (2011) 2931–2947 2945
bonds at the surface (see Fig. 5) instead of considerably reducing
the gap by a coalescence of opposite surfaces. Therefore, both the
broadness of the Si–O–Si bond angle and the, thus consequently
caused, change of the Si–Si-distances (see Fig. 6) reflect the
floppiness of the network and give a strong hint towards
the different ring sizes, which are generated, in order to saturate
the dangling bonds at the surface. However, this behaviour leads
to an increase of the structural surface defects by the formation of
new rings, which differ from the ‘‘bulk’’ rings. A rough and
qualitative estimate of the degree of disorder or number of
defects at the surfaces close to the gap may be seen from the
standard deviation of the temperature in the respective layers. For
the ZSM-5-configurations we measure with increasing gap-size
an increasing standard deviation of the temperature at the
position of the surfaces. Compared to the a-quartz-structures this
effect is much larger and sustain the impressions which one gets
from the structure (compare Figs. 1 and 5). Therefore, the
probability to have defects or disorder at the surface is larger in
the ZSM-5-configuration than in the a-quartz-structure.

In the mixed systems, which necessarily will have two gaps,
we investigated two different situations: in the first combination,
which comprises 720 atoms of an a-quartz-structure and 576
atoms in a ZSM-5-configuration aligned in y-direction, one
gap—at the boundary—has a size of 1.0 Å, whereas for the second
gap in the centre we have chosen sizes ranging from 0.5 up to
10 Å. The gap at the boundary (with a size of 1.0 Å) is closed in all
simulations. However, the gap in the centre will not be closed for
distances larger than 5 Å. Again one can argue, that—due to the
interaction range of the potential—the attractions between atoms
lying on opposite sites of the gap are too small to lead to a
coalescence of the surfaces. What makes the situation even more
complicated is the fact, that—in contrast to the previous
simulations—the sub-systems do not match and therefore, only
disordered interfaces are generated or surface defects are devel-
oped at the borders close to the gap. As we have previously seen
the partial amorphization of the system is a favoured strategy in
order to reduce the surface defects, which are caused by the
dangling bonds of the generated interface at the beginning of
the simulation. This amorphization can also be deduced from the
relatively large values found in the atomic shifts which range
from 1.69 up to 2.15 Å per atom. Here one should have in mind
that these shifts contribute partially to the coalescence of surfaces
and therefore, a large part is due to local changes of the
structures.

What is really striking is the fact that the partial pair-correlation
functions of this mixed system have a higher similarity to the peak-
distributions of the ZSM-5-systems than to the a-quartz-structures,
this can be interpreted that the ZSM-5-system is relatively more
conserved and that vice versa the a-quartz-structure is more
disturbed.

To check whether system size or orientation of the structures
play a crucial role we investigated a second model. In the second
mixed model we aligned an a-quartz of 2520 atoms in x-direction
with a ZSM-5-structure of 1728 atoms. Since the sub-structure do
not match, the complete structures have two gaps. One gap is
established in the centre where the two structures are combined,
and a second gap is generated at the boundary where periodic
boundary conditions are applied. The construction is designed
such that the central gap is always half as large as the boundary’s
gap. The central gap, which is smaller than 4 Å in our study,
is closed in all considered models. This explains the very
large averaged atomic shifts up to 2.64 Å, which linearly increase
with the gap-sizes, i.e. a fraction of the atomic displacements
contributes to the coalescence of the surfaces. Nevertheless, the
largest part of the shifts is due to introduce defects or disorder
into the configuration.
The gap at the boundary is only closed for those cases in which
the distance between the opposite sites is smaller than 3 Å. The
generated interfaces show a disordered structure compared to the
those parts of the systems which are far apart from the ‘‘inter-
structural’’ borders. From the structures (see Fig. 13) one can
inspect that the ZSM-5-part of the configuration is more affected
by the amorphization of the interface compared to the
a-quartz-configuration. This observation may be understood from
the floppiness of the ZSM-5-network which is also expressed in
the broadness of the Si–O–Si bond-angle distribution with a broad
peak at an angle of 140–1451 and a (small) shoulder at 1201. The
main difference of the two mixed systems is the alignment of the
sub-structures and the construction of the gaps introduced in the
configurations. The difference in the system sizes plays a minor
role, since the larger system is generated by the elongation of the
structure in only one direction (b¼59.70 Å). Both, the dimension c

(27 Å) and the size along the direction of the alignment (40–50 Å)
are similar in both mixed structures. Comparing the structural
models the smaller system is much more disordered than the
larger structure. With increasing gap-size both the interface (due
to periodic boundary conditions) and the surfaces (in the centre of
the structure) show an increase of the degree of amorphization.
Whereas the larger system shows (partial) disordered interfaces
(in the centre) and even less disordered surfaces (due to periodic
boundary conditions) which have a decreasing number of surface
defects with increasing gap-size.

However, not only structural properties like bond angles give
hints to the degree of amorphization, it can be also deduced from
the temperature evolution in the vicinity of the surface. The
kinetic energy of the atoms forming surface defects show a larger
deviation than the atoms of more crystalline parts in the
structure.

Thermal properties are often important for the materials’
functionality. Therefore, we focus in our further discussion
on the temperature development and on thermal properties.
A general observation is related to the temperature development
in the structures and the equipartition theorem. In those struc-
tures which have no gaps or in which the gaps are closed by
coalescence of the surfaces within the observation time, it does
not matter whether the interface is amorphous, has defects or is
crystalline, the temperature is equally distributed throughout the
configuration and the heat can flow without any borders or
distortions. Therefore, the temperature in the structure without
application of a temperature gradient is really constant and the
temperature standard deviations in the different layers are equal.
Changing the experimental set-up such that one layer is cooled to
a low and another layer is heated to a high temperature, leads to
the development of a temperature gradient in the structures
which have no gaps or where the gaps are closed, i.e. the heat
can flow, since there are no borders and a gradient can clearly
develop. Astonishingly, the number of defects or the degree of
amorphization is irrelevant for the development of a temperature
gradient and even the standard deviation of the temperatures is
not influenced by structural details.

In those models where initially the structures generated
surfaces remained throughout the MD-simulations, these act as
heat barriers in qualitative agreement with experiments [1,9,10].
The keyword here is heat resistivity, i.e. the energy flow or the
heat transport through this part of the configuration is at least
considerably reduced or even completely vanished. However, not
only the presence of surfaces reduces the heat flow, the gap itself
will also play an important role. This is caused by the range of
atomic interactions, which is reduced with increasing distance.
Therefore, in the case of constant temperature runs one can
clearly see that, for those structures where a gap is present
between the two sub-structures throughout the observation time,
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there is an additional (to the heat resistive) barrier at the surfaces.
Compared to the layers of the bulk and depending on the gap-size
and the type of system a larger standard deviation of the
temperature is observed at the surfaces, which hints especially
to an increase of the number of defects or the degree of
disorder at the barrier. Change of the computational set-up from
constant temperature to the application of a temperature gradient,
i.e. heating one layer to a high temperature and cooling a second
layer to a low temperature will not lead to a (continuous)
temperature gradient in the structure since at the surfaces a
temperature jump (a little less than the applied temperature
difference) is established. For those runs where we applied
temperature gradients the energy transport is stopped or at least
hindered and a temperature difference at the boundary occurs.
These findings can be explained by the mismatch or the inter-
ruption of the phonons in such ‘‘broken’’ systems [1], i.e. the
energy cannot be exchanged between the surfaces (remember the
simulation is in vacuo) therefore, the heated layer causes a hot
surface whereas the cooled layer generates a cool surface.
5. Summary and conclusion

Typically molecular dynamics simulations are used to investi-
gate bulk effects. Here we study the influence of surfaces or
interfaces on structural and thermal properties. Introducing
different gap-sizes in crystalline configurations is useful to
investigate surfaces between structures or the development of
boundaries/interfaces. The gaps, which we introduce at the
beginning of the simulation into the starting configurations, split
the systems into two sub-structures and range up to 10 Å.

In the case of the a-quartz2a-quartz we observe a coalescence
of the two surfaces up to a distance of 4 Å. For the quartz-based
structures which are investigated we observe that the nearest
neighbour distance Si–O is not affected by the simulation and has
no influence on these arrangements, most important for the
collective motions are the changes of the bond angles. The
observed coalescence leads to a (nearly) perfect crystalline inter-
face. In order to establish a crystalline interface, it is necessary to
have delocalized modes of the atoms which match in two similar
crystallites. This extended motion is mainly due to an enlarge-
ment of the Si–O–Si bond angle with increasing starting gap-size.
In the case of zeolite-based ZSM-5–ZSM-5-structures only the
smallest gap is closed by structural rearrangements. The surfaces
are introduced by cutting rings of different sizes (five-membered,
six-membered and ten-membered rings are affected) and thus
ring-deformations and strongly distorted rings are generated.
Therefore, one can easily imagine, that the nearest neighbour
distance of the silicon and oxygen atoms, which is too stable to
significantly contribute to an extension of the structure, could not
lead to a coalescence of the surfaces. Also, one should have in
mind that the relatively small density of the system is not
sufficient to have enough interaction partners on both sides of
the gap which could sustain a coalescence over a distance
comparable to a typical nearest-neighbor distance. However,
since sub-systems are of equal type, the coalescence of (very)
close surfaces generates a perfectly crystalline interface. In order
to undo the deformation or the tilt of the rings caused by a small
gap, a much more complicated motion is necessary, since also an
ordinary change of bond angles—as it is the case for a-quartzF
would not be sufficient to explain the twists and rotations of the
rings or ring-fractures. To identify the motions of the coalescing
surfaces a mode-analysis [14,20,60,67] would be helpful, but this
was not the focus of the work presented here. In contrast to the
systems comprising only one type of species, structures including
different sub-systems develop (partially) disordered interfaces,
because from a structural point of view the opposite atoms do not
match and from a dynamical point of view the modes are broken
at the surfaces (for the trapping/stopping of phonons, see discus-
sions in Refs. [1,10]). Nevertheless, the degree of amorphicity in
the vicinity of the interfaces is a quite astonishing outcome of our
simulations, since we applied (very) low temperatures in the
molecular dynamics runs.

For larger gap-sizes the surfaces cannot coalesce to build
common interfaces since the interaction potential between the
atoms of opposite sites is too weak to cause motions which are
sufficient to close the gap. Therefore, the surfaces which per

constructionem possess dangling bonds, inhibit a rather high
potential energy. To reduce these types of defects and to saturate
the dangling bonds, the atoms form new rings within the
respective surfaces. However, the ring sizes are variable and
consequently, at the surfaces structural defects will develop.
Extraordinary characteristics and most important property of
the surfaces is their influence on the thermal behaviour in the
structures.

The temperature development of the structures and especially
in the layers of the systems is a good indicator whether a
configuration has gaps confined by surfaces reducing the energy
transport or builds interfaces through which the thermal/kinetic
energy can be transported. A finding, which at least resembles
both experimental outcomes [9] and theoretical results [2], is
connected with the thermal and temperature evolution at inter-
faces. The generation of an interface via coalescence of two
surfaces leads to a (continuous) temperature distribution through
the complete system, and to a development of a standard
deviation which do not differ from layers in the bulk. Such
‘‘relaxations’’ of the temperatures are at least in qualitative
agreement with findings of experiments on thermal conductivity
in hetero-structures comprising a thin film deposited on bulk
material [10]. Whether the generated interface is crystalline, has
defects or is disordered cannot be revealed by the temperature
development.

In contrast to the interfaces the surfaces cause a totally
different reaction of the systems. In the case of a simulation using
constant temperature the layer at the surface developed a larger
standard deviation compared to the layers in the bulk. However,
the application of temperature gradients is even more strongly
influenced through the gaps, and vice versa reveals the presence
of surfaces. Because the energy or the temperature pulse cannot
cross the surface (trapping of modes, see Ref. [1]), it is reflected by
the surfaces (since our simulations are performed in vacuo).
Therefore, and because the layer close to the surface is comprised
by only few atoms (which also fluctuate) we observe a larger
standard deviation of the temperature in the respective layer
which consequently will correlate with the number of defects at
the surface or the degree of disorder. Most important property of
the temperature gradient is the development of a temperature
jump due to the heat barrier which is established by the surfaces
between the two sub-structures.
Appendix A. Supplementary material

Supplementary data associated with this article can be found
in the online version of 10.1016/j.physb.2011.02.074.
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